The exact solution of the Riemann problem in relativistic MHD with tangential magnetic fields

نویسندگان

  • Roberto Romero
  • José Ma
  • José A. Pons
  • Juan A. Miralles
چکیده

We have extended the procedure to find the exact solution of the Riemann problem in relativistic hydrodynamics to a particular case of relativistic magnetohydrodynamics in which the magnetic field of the initial states is tangential to the discontinuity and orthogonal to the flow velocity. The wave pattern produced after the break up of the initial discontinuity is analogous to the non–magnetic case and we show that the problem can be understood as a purely relativistic hydrodynamical problem with a modified equation of state. The new degree of freedom introduced by the non-zero component of the magnetic field results in interesting effects consisting in the change of the wave patterns for given initial thermodynamical states, in a similar way to the effects arising from the introduction of tangential velocities. Secondly, when the magnetic field dominates the thermodynamical pressure and energy, the wave speeds approach the speed of light leading to fast shocks and fast and arbitrarily thin rarefaction waves. Our approach is the first non-trivial exact solution of a Riemann problem in relativistic magnetohydrodynamics and it can also be of great interest to test numerical codes against known analytical or exact solutions†.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Exact Solution of the Riemann Problem in Relativistic MHD

We discuss the procedure for the exact solution of the Riemann problem in special relativistic MHD. We consider both initial states leading to a set of only three waves analogous to the ones in relativistic hydrodynamics, as well as generic initial states leading to the full set of seven MHD waves. Because of its generality, the solution presented here could serve as an important if not indispe...

متن کامل

The exact solution of the Riemann problem in relativistic magnetohydrodynamics

We discuss the procedure for the exact solution of the Riemann problem in special relativistic magnetohydrodynamics (MHD). We consider both initial states leading to a set of only three waves analogous to the ones in relativistic hydrodynamics, as well as generic initial states leading to the full set of seven MHD waves. Because of its generality, the solution presented here could serve as an i...

متن کامل

The exact solution of the Riemann problem with non - zero tangential velocities in relativistic hydrodynamics

We have generalised the exact solution of the Riemann problem in special relativistic hydrodynamics (Mart́ı & Müller 1994) for arbitrary tangential flow velocities. The solution is obtained by solving the jump conditions across shocks plus an ordinary differential equation arising from the self-similarity condition along rarefaction waves, in a similar way as in purely normal flow. The dependenc...

متن کامل

An exact Riemann Solver for multidimensional special relativistic hydrodynamics

We have generalised the exact solution of the Riemann problem in special relativistic hydrodynamics [6] for arbitrary tangential flow velocities. The solution is obtained by solving the jump conditions across shocks plus an ordinary differential equation arising from the self-similarity condition along rarefaction waves, in a similar way as in purely normal flow. The dependence of the solution ...

متن کامل

An Improved Exact Riemann Solver for Multidimensional Relativistic Flows

We extend our approach for the exact solution of the Riemann problem in relativistic hydrodynamics to the case in which the fluid velocity has components tangential to the initial discontinuity. As in one-dimensional flows, we here show that the wave-pattern produced in a multidimensional relativistic Riemann problem can be predicted entirely by examining the initial conditions. Our method is l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008